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Abstract: We have developed a receptor-based pharmacophore method which utilizes a collection of protein
structures to account for inherent protein flexibility in structure-based drug design. Several procedures
were systematically evaluated to derive the most general protocol for using multiple protein structures.
Most notably, incorporating more protein flexibility improved the performance of the method. The
pharmacophore models successfully discriminate known inhibitors from drug-like non-inhibitors. Furthermore,
the models correctly identify the bound conformations of some ligands. We used unliganded HIV-1 protease
to develop and validate this method. Drug design is always initiated with a protein-ligand structure, and
such success with unbound protein structures is remarkable s particularly in the case of HIV-1 protease,
which has a large conformational change upon binding. This technique holds the promise of successful
computer-based drug design before bound crystal structures are even discovered, which can mean a jump-
start of 1-3 years in tackling some medically relevant systems with computational methods.

Introduction

Structure-based drug design (SBDD) is classically based on
an X-ray structure of a protein target complexed with a known
agonist or antagonist. This complex is analyzed and novel
compounds are designed to maximize interactions with the
proteins thereby increasing selectivity and potency. The
method has been used extensively in the pharmaceutical industry
to develop successful new therapeutics.1-3

Crystal structures provide only a single conformation of the
protein. Although this structure is a statistical average of many
similar conformations present in the crystal lattice, the informa-
tion on protein dynamics is limited. Conformations are also
influenced by the crystallization conditions: crystal packing
effects, pH, and temperature can alter the conformation and
provide misleading information for SBDD. Furthermore, ligand
binding can induce a conformational change in both the protein
and ligand. Though ligand flexibility is often considered in
SBDD, including protein flexibility is in its infancy. Therefore,
new techniques are needed to push the frontiers of computer-
aided drug discovery by incorporating ensembles of protein
conformations to more accurately simulate the inherent motion
of the system and potential induced fit.

Several groups have begun to incorporate protein flexibility
into SBDD. Research in this area has been summarized in
several recent reviews.4-8 The first approach to employ an
ensemble of protein structures for drug design created an
“average” structure derived from several crystal structures or
NMR structures.9 Other techniques use a graph theory approach

to generate multiple ligand conformations which are then rapidly
screened against an active-site template, eliminating most
compounds and retaining only a small number for docking.10

The FLEXX docking software has also recently been extended
to include protein flexibility by using a combinatorial collection
of protein conformations (FLEXE).11 Multiple protein structures
have also been used to determine the “best” complex of ligand
and enzyme by efficient docking and accurate scoring among
an ensemble of conformational states.12

In 1999, Carlson et al. described a method to model the
protein flexibility of human immunodeficiency virus (HIV-1)
integrase and to develop a receptor-based pharmacophore model
based on multiple protein structures (MPS).13,14Using MPS from
molecular dynamics (MD) simulations, the pharmacophore
model successfully predicted novel HIV-1 integrase inhibitors
from the Available Chemicals Directory that were confirmed
by biological testing.
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To generalize the method, we have applied it to the unbound
structure of HIV-1 protease (HIVp). HIVp is an important drug
target for the treatment of AIDS; seven drugs are currently
marketed as HIVp inhibitors.1 It is a system where protein
flexibility is important for ligand binding.15,16 Furthermore, it
has been studied extensively both experimentally and compu-
tationally, and the wealth of data makes this an ideal case to
test and refine the MPS method.

To develop a robust method for drug discovery, we have
investigated several variables of the method, including MD
simulation length, pharmacophore element size, number of
required elements, and alignment mechanism. Using MPS
pharmacophore models, we have succeeded in discriminating
known ligands from drug-like non-inhibitors, showing better
performance with the incorporation of more protein flexibility.
The models were developed from uncomplexed HIVp, and the
ability to do accurate SBDD with an unbound structure is a
significant breakthrough. The models were not only able to
identify the correct compounds but also to predict the proper
bound conformation of known ligands in a system with
significant structural reorganization upon ligand binding.

Computational Methods

Protein Preparation and MD. The apo HIVp structure (1HHP)17

was solvated in a 62× 62 × 82 Å3 box of TIP3P18 water using the
AMBER619 suite of programs. Using the sander_classic module, the
system was pre-equilibrated for 200 ps with the protein held fixed to
allow the water to optimally orient around the protein. A second
equilibration of 200 ps was performed with the protein restraints
removed, and 3 ns of production phase MD were collected. The
conformational fluctuations observed in the simulation are stable and
consistent with NMR studies of unliganded HIVp.20,21 A detailed
discussion of the MD simulation will be published elsewhere.22

Snapshots were saved from the MD simulation after equilibration and
every 100 ps along the trajectory.

MUSIC Simulations. Each protein snapshot was used in a multi-
unit search for interacting conformers (MUSIC) simulation with the
BOSS program,23 using the OPLS force field.24 The protein was held
rigid during the MUSIC simulations (the use of many protein
conformations took the place of explicit flexibility at this stage). The
active site of each snapshot was flooded with hundreds of small-
molecule probes which were minimized using low-temperature Monte
Carlo sampling. All probe-probe interactions were ignored, so each
probe experienced only the forces associated with the protein. This
allowed the probe molecules to cluster to the surface of the protein
and reveal positions of favorable interactions for a particular chemical
functionality. A detailed description of the MUSIC methodology has
been published elsewhere.14

For the HIVp study, three small-molecule probes were chosen to
map the active site. Methanol probes revealed both hydrogen-bond-
donating and -accepting sites, benzene elucidated favorable aromatic
interactions, and ethane further clarified hydrophobic from aromatic
interactions. Discrete clusters were observed for all three probes used,
and an example of the results from a MUSIC simulation with benzene
is shown in Figure 1A. As the figure shows, the clusters were obvious
and did not require an RMSD cutoff to define them.

Clustering of Pharmacophore Elements.For each snapshot, probes
with any atom within 10 Å of the two catalytic aspartate residues (25
and 25′) were examined. Each cluster is represented by its “parent”,
the probe molecule with the most favorable interaction energy with
the protein as calculated in the MUSIC procedure.

Protein conformations taken along the MD trajectory were aligned,
and the parent probes were clustered. These “clusters of clusters”
identify regions of consensus where most conformations of the protein
will be complemented by the probe functionality. The consensus clusters
were also obvious and did not require an RMSD cutoff to define them.
We should note that if we attempted to use a large number of snap-
shots for the MPS model, the consensus clusters became too diffuse to
identify easily (data not shown). Each consensus region contained
probes from different time points in the trajectory, and at least 40% of
the snapshots were required to contribute to a given consensus cluster.
Requiring representation of probes from the beginning, middle, and
end of the trajectory ensured that the consensus features were
representative of the entire conformational space sampled by the MD
trajectory. An example of the consensus clusters for benzene is shown
in Figure 1B.

To represent the consensus clusters as pharmacophore elements, the
average position and the RMSD of the clusters were determined. For
methanol, the pharmacophore center was defined as the average position
of the O atoms in the cluster. For benzene, the centroid determined the
average position, and for ethane the center point between the two
carbons was chosen. The radii of the pharmacophore elements were
based on the RMSD of the consensus clusters. It should be noted that
we also created models using all probes from the individual snapshotss
not just the parentss to define the pharmacophore elements. The
models were essentially the same; the difference in the centers and
RMSD weree0.1 Å for all elements (data not shown). We chose to
work with the parents because it simplified the problem without losing
precision.

Two excluded volumes were used to define the bottom of the binding
site. The centers were defined as the average position of theγ-carbon
of each catalytic aspartate. The radii of the excluded volumes were
not based on the RMSD of the atoms (the RMSD was too small to
really represent the bottom of the binding site). The radii were set to
1.5 Å, roughly the Cγ-Oδ bond length in the catalytic Asp side chains,
so that it would represent the entire carboxylate group. Any pharma-
cophore element that was greater than 10 Å from the excluded volume
centers was eliminated. Overlapping ethane and benzene clusters were
combined into a single hydrophobic cluster by recalculating the element
center and RMSD, including both the centroid of the benzene ring and
the midpoint of the ethane C-C bond. Lone benzene clusters were
left as aromatic elements, and extraneous ethane clusters were removed.
Methanol clusters were defined as hydrogen-bond donors, acceptors,
or doneptors (possessing both hydrogen-bond-donating and -accepting
character). Overlapping pharmacophore elements were simplified by
retaining the aromatic or aromatic/hydrophobic sites and eliminating
hydrogen-bonding sites. A discussion of this issue is presented as
Supporting Information. A representative pharmacophore model is
shown in Figure 1C.

Figure 1D shows the superposition of co-crystallized ligands onto
the 1HHP crystal structure. Using the MPS method, we have de novo
created pharmacophores that are consistent with placement of aromatic,
hydrophobic, and hydrogen-bonding features of the bound ligands from
experimental structures.
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Creation of the Ligand Databases.To evaluate the pharmacophore
models, two ligand databases were created. The known-ligands database
was created by extracting the bound conformation of 80 unique ligands
from co-crystals present in the PDB. To augment this database,
structures of known inhibitors from a review of HIV-1 protease
inhibition1 were built in MOE25 and subjected to an 85% similarity
criteria using fingerprint analysis. Seven ligands were subsequently
removed to eliminate remaining structural redundancies in the database,
yielding a database of 89 molecules. Multiple conformations of each
ligand were generated by a stochastic conformational search in MOE
using the MMFF force field.26 The stochastic search was run with an
energy cutoff of 25 kcal/mol and heavy-atom RMSD criterion of 2 Å.
A maximum of 300 lowest-energy confomers were retained.

The drug-like non-inhibitor database was created from the Com-
prehensive Medicinal Chemistry Index (CMC).27,28 Using the MDL
DiscoveryGate29 software, the CMC (∼9000 compounds) was filtered
to obtain an appropriate database of small-molecule ligands. Only
molecules without listed HIVp activity, with drug-like molecular weight
(1200 > MW > 300), at least one aromatic group, and at least one
hydrogen-bond donor were considered. A spatial filter was used to
ensure that the ligands were appropriately sized to interact with the
large HIVp active site. Further refinement by fingerprint clustering,
using a 65% similarity cutoff, resulted in 88 entries. These entries were
examined by hand, and three structures were eliminated due to the
presence of metals or fragmentation of the structure, yielding a set of

85 compounds. Confomers were generated using the same stochastic
search method described above. The structures of both the known
inhibitors and the drug-like non-inhibitors are provided as Supporting
Information.

Criteria for Model Evaluation. Each pharmacophore model was
screened against the two databases of potential ligands, known inhibitors
(89 entries) and drug-like non-inhibitors (85 entries). MOE25 was used
to screen the pharmacophore models against the two databases. A ligand
was counted as a hit if at least one pre-generated conformation could
be rigidly aligned to the pharmacophore coordinates.

There is no single criterion for evaluating the predictive ability of
these pharmacophore models. A delicate balance exists between
achieving a high yield, identifying the maximum number of active
compounds, and minimizing false positives. We have chosen to present
the screening data as receiver operator characteristic (ROC) curves,
with the percentage of known inhibitors identified by the models plotted
against the percentage of false positives identified. Using this metric,
a perfect model would predict 100% of the known inhibitors and zero
non-inhibitors and would lie in the upper-left corner of the ROC plot
(point 0,100). The raw data from the ROC plots are available as
Supporting Information.

Results and Discussion

Creation of the Pharmacophore Models.Our goal in this
study was to examine several factors used in creating the MPS
pharmacophore models, to determine the optimum protocol for
application to any protein system. When determining the
consensus clusters, we chose to align the snapshots either by
whole protein CR position or by the catalytic aspartates (all
atoms from the two residues). MPS models were created from
snapshots from 1, 2, or 3 ns of the MD simulation. For each
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Figure 1. (A) Raw output of minimizing benzene probes to a single snapshot from the MD, demonstrating the observed clustering. (B) Parent probes from
many MPS, overlaid to reveal consensus clusters. Note that some clusters in panel A are not retained when MPS are compared. Probes are colored blue to
yellow to red according to their point in the MD simulation. (C) Representative pharmacophore model (1 ns, CR alignment, radii of 2× RMSD). Element
spheres are color-coded according to chemical functionality: red, hydrogen-bond-donating; green, aromatic; cyan, aromatic or hydrophobic. (D) Superposition
of ∼50 co-crystallized HIVp inhibitors. General aromatic, hydrophobic, and hydrogen-bonding features agree well with the model in panel C.
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model, the size of the pharmacophore elements was varied by
multiplying the consensus cluster RMSD by 1, 1.33, 1.67, 2,
2.33, 2.67, or 3. Also, the number of pharmacophore elements
required for a “hit” was varied.

Below we describe in detail how the optimal MPS protocol
was developed. The resulting models were highly successful in
discriminating known HIVp inhibitors from drug-like non-
inhibitors, correctly selecting 85-90% of the known ligands
with a false positive rate of only 11-19%. Models derived from
longer simulations (2 and 3 ns) exhibited better performance,
as additional protein conformations are sampled. This is strong
support of the methodology because incorporating more flex-
ibility improves the MPS models.

The pharmacophore models derived from the unbound HIVp
structure also accurately predict the bound conformation of some
known ligands (Figure 2). To our knowledge, this is the first
example of receptor-based pharmacophore models derived from
unbound protein structure accurately predicting bound-ligand
conformations.

Effect of Altering Model Specificity. The pharmacophore
models created using the MUSIC methodology consisted of six
elements representing favorable interaction areas for a given
chemical functionality (Figure 1C). To determine how stringent
the pharmacophore query needed to be, the number of matched
pharmacophore elements required for a “hit” was varied. Each
six-site pharmacophore model was screened, requiring all six
pharmacophore elements to be present (6/6), any five out of
six (5/6), and any four out of six (4/6). Thus, the 5/6 model
actually screens six individual models, as each pharmacophore
site is systematically omitted. Figure 3 clearly shows that
requiring only 4/6 elements enables far too many non-inhibitors
to fit the model, while some of the restrictive 6/6 models can
miss many true inhibitors.

Effect of Varying the Pharmacophore Element Radii.The
clustering method averages coordinates from the probes in the
consensus cluster to provide the center and RMSD of the parents
in the cluster. To determine the optimal radii size, we multiplied
the cluster RMSD by values of 1, 1.33, 1.67, 2, 2.33, 2.67, and
3, creating seven models for each query (6/6, 5/6, or 4/6). Small
radii result in highly specific pharmacophore models which
identify high-quality hits. However, if the radii are too small,
the models will be too specific to hit all the diverse known
inhibitors. At the other extreme, using large radii creates large
pharmacophore elements into which almost any molecule can
fit, thereby losing all selectivity and specificity. As expected,
we found that the optimal radii were dependent on the query
stringency. For HIVp, optimal selectivity was achieved with

two models: the most stringent query (6/6) coupled with larger
radii (2, 2.67), and the 5/6 query with smaller radii (1.33, 1.67,
Figure 3).

In the industrial setting, it is common to have a large database
with few true positives. In these cases, one may wish to limit
the false positives as much as possible. Though some actives
will be sacrificed, the expense of testing of many false leads
will be kept to a minimum. For this goal, the (6/6), 2× RSMD,
1-ns model would be a good choice to reduce the number of
false hits. Though only 34% of the actives are hit, only 1% of
the inactives are identified. The smallest radii (6/6) models also
show excellent enrichment for the 2-ns and 3-ns data (see data
in Supporting Information).

Effect of Protein Alignment. The identification of consensus
clusters is dependent on the method by which the protein
snapshots are overlaid. The inherent flexibility of the flap
domain of HIVp could influence protein alignment. Aligning

Figure 2. Conformers of two inhibitors that hit the pharmacophore model,
overlaid with their actual crystal structure positions. (Proteins and phar-
macophore models are not shown for clarity.) The crystal conformations
are shown in gray ball-and-stick and the conformers that hit the MPS models
are colored; AQ148 is in green (left, 3AID) and SD146 is in yellow (right,
1QBT). Ligand heteroatoms are colored to aid comparison. These results
are from screening against our 2-ns, CR-aligned, 1.67× RMSD MPS
pharmacophore model.

Figure 3. Screening data presented as ROC curves. Requiring 6/6
pharmacophore elements are squares, 5/6 triangles, and 4/6 diamonds. Points
in each series are increasing RMSD values from 1× to 3×. For reference,
a line of slope 1 indicates performance where there is no preference for
known active compounds over inactives. (A) The 1-ns CR (black) and Asp
(red) alignment methods show nearly the same performance. (B) The 1-ns
(black), 2-ns (green), and 3-ns (orange) pharmacophore models (CR
alignment). The 2-ns and 3-ns models show significant improvement over
the 1-ns model.
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by CR gives a global fit of the MPS, but the highly flexible
flap region may skew the alignment inappropriately. In contrast,
aligning by the catalytic residues isolates the active-site flex-
ibility from the mobile flap region but may not be an appropriate
frame of reference to align a large open binding site. We
hypothesized that the different alignment methods would result
in different pharmacophore models; however, minimal difference
in model performance was observed (Figure 3A). Aligning by
CR is a more general method and is easily extended to other
protein systems. We therefore chose to use alignment by CR
for our subsequent studies of simulation length.

Effect of Simulation Length. We predicted that, by using a
longer simulation time, more conformational space of the
enzyme would be explored, resulting in better performance of
the resulting pharmacophore models. To support our claim that
more conformational space is sampled, we examined the RMSD
of the structures over the course of the MD. The maximal
RMSD was 1.4 Å in the first nanosecond, 1.7 Å in the second
nanosecond, and 1.95 Å in the third nanosecond (see the bold,
black line in Figure 4 of ref 20).

Models were created using snapshots from 1, 2, or 3 ns of
the simulation. The 1-ns models used the equilibrated structure
and 10 additional snapshots taken every 100 ps along the
trajectory. The 2-ns and 3-ns models used the equilibrated
structure and snapshots taken every 200 ps (11 and 16 snapshots,
respectively). The 2-ns and 3-ns models do indeed perform better
than the 1-ns model (Figure 3B). The optimum 2-ns model (5/
6, 1.67× RMSD) predicts 90% of the known inhibitors while
identifying only 19% of the non-inhibitors as false positives.
Similarly, the best 3-ns model (6/6, 2× RMSD) predicts 85%
of the known inhibitors and 11% of the non-inhibitors. In
contrast, the optimum 1-ns model (5/6, 2.33× RMSD) identifies
84% of the known inhibitors and has a much higher false
positive rate of 24%. The use of 2 or 3 ns of data is a significant
improvement over only 1 ns. We were pleased to see that
incorporating more protein flexibility improves the models.

The most noticeable difference between the 2-ns and 3-ns
models is that the most stringent model (6/6) exhibits the best
performance for 3 ns, but the (5/6) criterion is the better choice
for 2 ns of data (Figure 3B). The 3-ns model incorporates 16
snapshots, compared to 11 for the 2-ns model. The additional
snapshots result in greater spread in the consensus clusters and
therefore larger RMSDs for the pharmacophore elements. This
may explain why (6/6) is more generous with 3 ns of data.

Prediction of Bound Ligand Conformations. Docking to
an apo protein structure is challenging, particularly for proteins
like HIVp that have a large conformational change upon
binding.15 The flap domain of HIVp is known to be highly
flexible and closes 5-7 Å upon ligand binding.16 It is therefore
remarkable that the simple six-point pharmacophore models we
have created from the unbound 1HHP crystal structure of HIVp
identify the correct binding mode of known inhibitors. As shown
in Figure 2, some ligand conformations predicted by the
pharmacophore model overlay well with the known conforma-
tions extracted from the co-crystals. In the case where co-crystals
were not available for known inhibitors, we see good agreement
comparing predicted bound conformations to crystal conforma-
tions of structurally related inhibitors.

Investigation of False Positives.To thoroughly evaluate our
pharmacophore models, we examined the false positives identi-

fied from the drug-like non-inhibitor database. For the 2-ns
model, 16 compounds (19%) of the non-inhibitors were identi-
fied as hits, while for the 3-ns model, 9 compounds (11%) were
identified. The structures of both sets of false positives are
available as Supporting Information. In both cases, two of the
false positives are renin inhibitorss inhibitors of a homologous
aspartic protease. Others are peptide analogues that can inhibit
peptide cleavage. It is understandable that these molecules hit
our pharmacophore model, given the proteolytic activity of
HIVp, and it is quite likely that several of our “false positives”
are indeed inhibitors.

It should also be noted that we defined the non-inhibitor
database to provide a particularly rigorous test set. The CMC
database was “pre-screened” to identify compounds that were
the correct size and compositions the compounds most likely
to fit the MPS models. This eliminated many drug-like
compounds that could not possibly fit the HIVp pharmaco-
phores. Had we included those thousands of compounds in the
test set, our false-positive rate would have been incredibly low,
but for superficial reasons.

Comparison to a Static Pharmacophore Model. The
advantages of using MPS in pharmacophore development were
most apparent when we created a model from a single HIVp
crystal structure. The same three probes were run in MUSIC
with the 1HHP crystal structure (data not shown). The resulting
static model had far too many sites with very small RMSD,
and it was not appropriate to use in screening. There was no
clear way to identify the most important features of the model
and thereby reduce the complexity. Using MPS, features
conserved over the entire simulation were retained, distilling
the complicated individual pharmacophore maps into a con-
sensus map incorporating the most important and consistent
complements to the inherent protein flexibility.

Conclusions

By incorporating MPS, we have developed pharmacophore
models which successfully discriminate known HIVp inhibitors
from drug-like non-inhibitors. Starting from an unbound struc-
ture of HIVp, our pharmacophore models are able to predict
the actual ligand conformations observed in co-crystals. We have
also investigated several variables of the MPS method and
proposed optimized parameters to enable this technique to be
applied to other medicinally important systems. Increasing the
simulation time allows for the sampling of more conformational
space and results in a better model, reinforcing the importance
of protein flexibility in SBDD.

The pharmacophore models focus on the consensus regions,
where all protein structures have similar requirements, but they
do not place restrictions on the flexible regions of the binding
site. Creating pharmacophore models in this way provides a
means to identify hits with very different scaffolds and chemical
featuress to explore new chemistry space without bias toward
reproducing the same size and functional groups of other co-
crystallized ligands. This method is ideal for rapidly screening
large databases of compounds, broadening and enriching the
pool of compounds subsequently tested in biological assays.

We will continue developing the MPS pharmacophore
method. To determine the dependence of the methodology on
the starting structure used in the MD simulations, we will apply
this method to the other two apo structures in the PDB (3HVP
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and 3PHV). We will also examine the optimal number of
snapshots to use as well as other computational methods to
generate MPS. Protocols for using MPS from experimental
structures will also be developed to make this method more
broadly applicable.
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